
IEEE TRANSACTIONS ON SOFTWARE ENGINEiERING, VOL. 22, NO. 5, MAY 1996 329

A Network Pump
Myong H. Kang, Ira S. Moskowitz, Member, IEEE, and Daniel C. Lee, Member, IEEE

Abstract-A designer of reliable multi-level secure (MLS) networks must consider covert channels and denial of service attacks in
addition to traditional network Performance measures such as throughput, fairness, and reliability. In this paper we show how to
extend the NRL data Pump to a certain MLS network architecture in order to balance the requirements of congestion control,
fairness, good performance, and reliability against those of minimal threats from covert channels and denial of service attacks. We
back up our claims with simulation results.

Index Terms-Covert channel, flow control, gateway, information theory, router, security.

+
1 INTRODUCTION

MULTI-LEVEL secure (MLS) system stores and processes A information of different sensitivity levels in a secure
manner. By this we mean that access is controlled so that no
high level information is allowed to pass to lower level
users/processes (Low) but lower level information is avail-
able to higher level users/processes (High) [3].

Thus, an MLS system allows Low to send messages to
High, but High should not be able to send messages to
Low. On the other hand, acknowledgments (ACK) to Low
that High has received its messages are necessary for reli-
ability and performance. This is especially true for distrib-
uted systems in which the communication channels may
not always be reliable. High, however, can manipulate the
times that ACKs arrive in order to covertly send unauthor-
ized messages to Low. Therefore, we see that MLS security
is in conflict with the need for functionality.

The Pump, developed at NRL [6], 171, solves the di-
lemma of simultaneously assuring reliability, performance,
and security when there is only one Low and one High. We
will refer to this as the basic Pump. The basic Pump allows
High to send ACKs to Low indiredly through an interme-
diary communication buffer. Further, the basic Pump re-
quires that Low receive the ACKs at probabilistic time inter-
vals. This probabilistic ACK is based upon past High activity.

Since computer systems are becoming more open and
interconnected, denial of service problems are receiving
more attention [X I . Hence, security devices such as the
Pump should also provide protectioin against such attacks.

This paper addresses how to adapt the basic Pump for
use in a network environment, where we have multiple
Lows and multiple Highs. We will refer to this as the
"network Pump." As we move from a dedicated data net-
work to the Broadband Integrated Service Digital Network
(B-ISDN) such as the Asynchronous Transfer Mode (ATM)
Network [9], the issues of congestion control, fairness, and
reliability become extremely important and extremely

M.H. Kang, 1,s. Moskowitz, and D.C. Lee aye with the Naval Research
Laboratory, Washington, D.C. 20375.
E-mai l : Imkang, moskowitz}@itd.nrl.navy.mil; lee@kingcrab.nrl.navy.mil.

Manuscript received Feb. 6,1996.
Recommended for acceptance by R. Kemmerer.
Fou information on obta in ing reprints of this article, please send e-mail to:
tvansse@computer.ov, and reference I E E E C S Log Number 596045.

complicated. The network community itself has not worked
all of these issues out yet. Our problem is even more com-
plex because we are coupling security (i.e., covert channels
[lo] and denial of service) with the above.

1.1 Assumptions and Terminology
The network environment that is considered i s shown in
Fig. 1. Each Low (High) is at the same low (high) level. Pos-
sible implementations of the network Pump are a packet
switch between workstations, a router connecting local area
network segments, etc.

Network
I Low inputs J High outputs

Fig. 1. The Pump in a network environment.

There are many Lows (Lj) and Highs (Hj), and they are
untrusted processes, thus they may contain Trojan Horses
(malicious software). The network Pump is a trusted proc-
ess (assured to be free of malicious software) which medi-
ates traffic from Lows to Highs. Each message that will be
routed from a Low to a High has a message number (ID),
and input and output addresses associated with it. For sim-
plicity, we assume that all messages have the same length.
We do not consider multicasting in this paper. We further
assume that Lows (Highs) do not communicate among
themselves to simplify the covert channel analysis.

A session is a connection between any Low and any
High. In Fig. 1 there are I x J distinct sessions. During each
sessionq, a message leaves Lj, travels over linkj, goes into
the network Pump, and after processing leaves the network
Pump over link', and arrives at Hj. We assume that all
propagation delays are zero for conceptual simplicity.' The
minimal processing time of the network Pump is a fixed
overhead value 0,, which is small enough so that the net-
work Pump itself never becomes a performance bottleneck.

1. This assumption is true for the basic Pump also. It can be easily relaxed
in both cases.

0098-5589/96$05.00 01996 IEEE

mailto:lee@kingcrab.nrl.navy.mil

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1996 2. REPORT TYPE

3. DATES COVERED
 00-00-1996 to 00-00-1996

4. TITLE AND SUBTITLE
A Network Pump

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,4555 Overlook Avenue,
SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

330 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 5 , MAY 1996

The demand (input) rate Alj is the rate demanded by L,
destined for Hi. Each HI behaves as a server with service
rate plj. This is the inverse of the mean time of service by HI
for messages from L,.

1.2 Objectives
Most network resources are dynamically shared for effi-
ciency reasons. If this dynamic sharing is not carefully con-
trolled, then inefficiency and delays occur [4]. The main
functions of congestion control in a network are:

To prevent inputs from sending messages faster than
the outputs can handle them.
To prevent throughput degradation and loss of effi-
ciency from overloading the network.

* To prevent unfair allocation of network resources
from competing inputs.

Since the network Pump is a shared resource among many
sessions, it should provide the congestion control mecha-
nism. Let us discuss the specific objectives required of the
network Pump.

1.2.1 Reliability/ Handshaking
The reliability requirement can be simply stated as no loss of
messages and no duplication of messages. To satisfy this re-
quirement ACKs and message numbers (ID) are necessary.
The network Pump has a reliability protocol that works as
follows:

If a Low has not received ACK by time-out after sending
a message, it will retransmit the same message. If a High
receives the same message then it will keep only one copy.

Further, a Low does not send the next message to a spe-
cific High until its previous message to that High has been
ACKed (handshake protocol).

1.2.2 Performance
We desire good performance. The network Pump’s control
over the time of sending the ACKs to a Low can be utilized
for congestion control. The network Pump is designed to
exercise congestion control. The network Pump controls the
rates into itself, the realized (input) rates, by slaving Low’s
message transmission to the average rates out (service
rates) of the network Pump. It does so by moderating the
ACK rate to a Low, since this Low will not send a new mes-
sage until it receives an ACK from the previous message
from the same session (the handshake protocol).

If the service rates are greater than the demand rates,
then the network Pump should not hurt performance. If
service rates or output capacities are less than the demand
rates, then the outputs cannot handle their inputs. There-
fore, the network Pump by slowing the demand rate to the
realized rate, alleviates congestion, and at the worst, does
not lessen total throughput.

1.2.3 Fairness
Bandwidth of communication links, transmission speed,
and processing speed are all limited. Therefore, if the load
of data traffic offered to the network Pump exceeds its ca-
pability, some of the load must be cut. The load must be cut
fairly for all the sessions that share the network Pump. The
idea is shown in Fig. 2 where the illustrated output limita-

tion is due to limited output link capacity. Note, in denial of
service attacks (discussed later), the limitation is usually
due to decrease in the High service rate.

Demand Rate Realized Rate

Routing
with
fairness

s criterion

Infinite link capacity Limited Link capacity

Fig. 2. Fairness

Fairness can be defined in different ways. One fairness
policy is max-min faiuness. This policy says all sessions
should get bandwidth according to the following crite-
rion-the smallest realized rate is as large as possible and,
given this, the second-smallest realized rate is as large as
possible, etc. [5]. For example, if there are three sessions
whose demand rates (units of messages per unit time) are
0.4, 0.5, 0.6 and the output capacity equals 1, then all three
sessions will have realized rates of 1/3, 1/3, 1/3 under
max-min fairness. If one session demands less than what it
can get, the leftover bandwidth will be equally shared
among the rest of the sessions. For example, if there are
three sessions whose demand rates are 0.2, 0.5, 0.6 and the
output capacity equals 1 then those sessions will have real-
ized rates 0.2,0.4,0.4, respectively, under max-min fairness.

The advantages of this policy are 1) there is a simple way
to implement this policy (i.e., round-robin scheduling [5])
and 2) the scheduling scheme does not need to know the
demand rates of sessions which may not always be known.
Since this policy gives preference to sessions that have
lower demand rate, it does not allow a session to take the
entire bandwidth if there is more than one session. One
disadvantage of this policy is that a heavily demanded ses-
sion is penalized more than a lightly demanded session
(i.e., not sensitive to demand rates).

There are other fairness policies, such as the proportional
policy [20]. This policy allocates bandwidth in proportion
to each input demand rate. The network community does
not have a “best” fairness policy. The network Pump uses
max-min fairness because of the above advantages.

7.2.4 Covert Channels
It is well known that the ACK stream that is required to
satisfy the reliability requirement introduces covert com-
munication channels. This was the motivation for devel-
oping the basic Pump over the conventional store and for-
ward buffer type of communication. We will show in Sec-
tion 3.2, using results from [6], [7], that the capacity of the
covert channels can be made negligible.

1.2.5 Denial of Service
We interpret the denial of service attack in a broad sense in
the network environment:

If a session cannot achieve its intended throughput due to
the misbehavior of other sessions then the session is under a
denial of service attack.

KANG ET AL.: A NETWORK PUMP

Since the network Pump is a shared resource among
several sessions, services for other sessions can be poten-
tially disrupted if too much resource is allocated to one
particular session. The design of the network Pump should
prevent such a situation.

2 BACKGROUND-THE BASIC PUMP

In the basic Pump our concern is sending messages from
(one) Low to (one) High. In [6], [7], [19], we reviewed why
traditional communication protocols (including wad-down
and blind write-up) cannot satisfy the needs for reliability,
performance, and security simultaneously. As a solution,
the basic Pump was introduced as shown in Fig. 3.

Pump

~ y { ~ ~ ~ = ~ messages

ACK
buffer

Fig. 3. The Basic Pump

The basic Pump [6] places a buffer (size n) between Low
and High, and gives ACKs at probabilistic times to Low
based upon a moving average (M A) of the past m High
ACK times. A High ACK time is the time from when the
buffer sends a message to High to the time when the buffer
receives Highs ACK. Thus, basing Low ACK times upon
past High activity has the double benefit of 1) keeping the
buffer from filling up and 2) having a minimal negative
impact upon performance. The Low ACK time is the time
from when Low sends a message to the basic Pump to the
time when Low receives the basic Pump’s ACK. The Low
ACK time is a slightly modified exponential random vari-
able 171 with mean equal to M A . Intuitively, the modifica-
tion is 1) a truncation of the exponential density at a design
parameter time-out and 2) a shift by an amount of time
equal to the minimum processing time (T,) of a message if
there is space on the buffer. When Low must wait for space
on the buffer, the above holds, except the shift is equal to T,
= madwait time for space, minimum processing time).
Thus, the Low ACK time is a random variable that takes
values between T, and time-out. (In [7] we have slightly
modified this over the first exposition of the basic Pump [6]
to introduce extra noise. However, for the network Pump
we stay with the simpler formulation due to the extra noise
from multiple users and a modified ACK scheme (see Sec-
tion 3.2, Covert Channel Analysis).)

At present, an implementation of the basic Pump is run-
ning on a XTS-300 platform [14]. Early results, along with the
simulation results of Kang and Moskowitz [7], show a proof
of concept for the basic Pump. Based upon this and the need
for a secure network congestion medliator we feel the exten-
sion to the network environment is proper. Presently, a pro-
totype network Pump is being built in hardware as a guard
by NRL‘s Center for High Assurance Computer Systems [22].

3 AN ARCHITECTURE OF THE NETWORK PUMP

The architecture of a network Pump is shown in Fig. 4.

33 1

/p

Fig. 4. A logical view of the network Pump.

Each component of the network Pump works as follows:

LOWS AND HIGHS (EXTERIOR TO THE NETWORK PUMP). LOWS

(Highs) is the set of inputs (outputs) to the network
Pump. Lows (Highs) consists of I (J) processes non-
communicating among themselves. Each Low, L, can
strive to send messages to any High, Hp with various
demand rates as discussed before. Since L, is outside of
the network Pump we assume the Li has some procedure
for sending messages over link;, the only constraint be-
ing that the demand rates are Alp such that XjA, 5 capac-
ity of link,. Consider sessioni,-after Li sends a message
to Hp it waits for the ACK to that message from the net-
work Pump. Once this ACK arrives, L, can send another
message to Hj. Therefore, each Low can only send a new
message in each session after it has received the ACK of
the previous message from the network Pump
(handshake protocol). When H, receives a message from
the network Pump it sends an ACK back after the ap-
propriate service time to the network Pump.

RECEIVERS. There is a receiveri for each L,. In receiver,, there
are J slots; slotj stores a messages from session, until it is
routed by the TLP.

TRUSTED LOW PROCESS (TLP). The TLP takes a message from
a receiver and routes it to the appropriate output buffer.
We denote by T, the time from when a message is sent
from a Low to the time when that message is placed in
the appropriate output buffer. (We will also refer to T,. as
”routing time” in the network Pump.) If there is available
space in the output buffer, T, is equal to the overhead 0,.
If there is no space, the message is not placed until there is
a space available. Therefore, T,. includes both 0, and the
amount of time the message waits until the output buffer
is available. After the message is routed to the output
buffer, the TLP is ready to send an ACK back to the ap-
propriate L,. The time this ACK arrives at Li depends on
the randomization scheme, but is always at least T,.

OUTPUT BUFFERS. There are I logical output buffers for H,,
each denoted as bufferij. A message from sessionij will be
stored in buffer,..

TRUSTED HIGH PROCESSES (THE’$. THP, delivers a message
from bufferi, to Hj according to a scheduling scheme.
THP, cannot deliver another message from bufferii until
the prior message from bufferij is ACKed (by Hi).

3.1 A Detailed Design
A detailed design rationale is described in this section.

332 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 5, MAY 1996

3.1.1 Trusted High Processes
THP, plays an important role in scheduling delivery from
output buffers to HI and in computing moving averages.
Fig. 5 graphically describes the role of a THP,.

bufferl-[

buffer2-

buffer,-

Fig. 5. A closer view of a trusted high process

Consider THP,-it has to deliver messages from each
buffer,] to Hj. Since the capacity of link' is limited by physi-
cal considerations and inputs may send more messages
than link' or Hi can handle, THP, needs some scheduling
scheme. This scheduling scheme determines the fairness
among different inputs.

The network Pump uses round-robin scheduling because
it is simple and achieves max-min fairness [51. For example, if
THP, has to serve three output buffers then an opportunity to
send a message is given in the order of buffer,], buffer,,,
buffer,], buffer,], If buffer2] does not have any message to
send then the opportunity is transferred to buffer3, and the
next opportunity is given to buffery, and so on.

THP, also maintains and updates moving averages
(MAlI., ..., MAIj). The reason for THP, to maintain I separate
moving averages (i.e., one per session) instead of one com-
bined moving average is that HI may service messages from
different Lows at different rates. Throughout this paper we
assume that the message service time is not a performance
bottleneck in the benign case. In other words, the bottleneck
is output links, not servers, unless the system is under de-
nial of service or covert channel attacks.

Since there is potentially more than one input, the
method of computing moving averages is different from
when there is only one input. When there is only one input,
the moving average is computed based on the interval from
the time the message is sent to High, to the time the ACK
arrived from High. However, if there is more than one in-
put, the message is ready to be sent by the Pump, but can-
not be sent because the output link is not available due to
the round-robin scheduling. This additional waiting time
must be taken into account or else the input messages will
flood the output buffers.

Specifically, MAii of the network Pump is the moving
average of the last m ACK times from Hj to bufferij. An
ACK time from Hj is the difference between when buffer,]
receives ACK from Hj and max(time that message arrived in
bufferii, time that the previous message from buffer, was
ACKed by Hj). In other words, if bufferij is not empty then
the previous ACK time by Hj is used to compute the mov-
ing average. However, if bufferii is empty when a new mes-
sage arrives then we use the arrival time instead of the pre-
vious ACK time.

3.1.2 Output Buffers
The number of messages in bufferii is important to achieve
fairness [51 (the bigger the number of messages in bufferij
the fairer). This is because our round-robin scheduler does
not take burstiness into account. The way to handle bursts
is to have enough messages queued in buffer!, so that times
of abundance and starvation (with respect to message arri-
vals) are balanced out. In fact, it is desirable to keep the
queue length in buffer, positive so that max-min fairness is
preserved. However, if the queue length is too big we have
potential covert channel and denial of service problems.
Thus, it is desirable to keep the queue length at a certain
level. To address this issue, we introduce the concept of Fair
size, which is a design parameter targeted for the desirable
queue length. Intuitively, the burstier the input, the larger
the Fair size must be. Note that Fair size has to be intelli-
gently chosen so that one session cannot dominate (fill) the
total output buffer and at the same time large enough to
accommodate burstiness. Good design requires that the
total output buffer has at least Fair size surplus spaces in
addition to sum of the Fair size spaces allocated for all ses-
sions. Intuitively, if all sessions are active and behaving, this
design leaves us with at least Fair size spaces in the total out-
put buffer. Fig. 6 pictorially shows buffer,, where the number
of messages in the buffer fluctuates around the Faiv size.

Fa i r s i ze

c

Fig. 6. A closer view of buffer,,.

Since the network Pump has a built-in mechanism to
share output buffers fairly among different sessions (i.e.,
moving average construction to control input rates which
~7ill be discussed in Section3.1.3), all output buffers are
dynamically shared among different sessions.

3.1.3 Trusted Low Process
When routing requests arrive from receivers, the TLP
routes messages to the proper output buffers and reads the
current moving average value. Once the message is deliv-
ered, the TLP is ready to send an ACK. However, this ACK
will be delayed depending on the moving average of the
session and the randomization scheme. The network Pump
uses a similar randomization scheme as the basic Pump
whose details are presented in [6], [7]. As described in Sec-
tion 2, the TLP of the basic Pump delays ACKs based on a
modified exponential random distribution whose mean is
the moving average of the session. This ACK rate controls
the input rates, through the handshake protocol, if the de-
mand rate is higher than the ACK rate.

As we discussed in Section 3.1.2, we wish to make sure
that the number of messages in an output buffer fluctuates
around the Fair size. To achieve this, we modify the ACK
scheme from the basic Pump. The way the basic Pump
controls the ACK time to Low can be written as follows:

KANG ET AL.: A NETWORK PUMP 333

, t i m e - ou t) otherwise ACK time =

where T, is the same as in Section 2, and Sr[MA - T‘,] is a
draw from a random distribution as also described in Sec-
tion2. (Note that there is only one session in the basic
Pump.) Recall that T, is the time between when the a mes-
sage is sent from Low to when the message is placed in the
output buffer. Hence, a random delay is included in the
ACK time in addition to T, if M A - T, > 0. A detailed de-
scription can be found in [7].

We now describe the way the network Pump controls
ACK times to L, for a message in each session. Let f,(x) be a
draw from the exponential distribution with mean x. Define

Q = fY(MAll - T,) + k . (N - Fair size)

where N is the number of messages in buffer, at the time
the message is placed in buffer,,, and k . (N - Fair size) is a
feedback term. Both k and Fair size can be chosen by a sys-
tem designer. Note that the moving average of the ACK
times from H, to the network Pump is computed separately
for each session. For session,, the ACK time to Low for each
message is:

T, if MAl1 - T, 5 0 or Q 5 0
min(T, + Q, time- out) otherwise

ACK time =

We now elaborate the rationale of the extra term k . (N - Fair
size) in Q. As long as L, has messages to send to HI, the net-
work Pump wants to keep buffer, nonempty. The reason is
to prevent missing the round-robin turn, and thus to give
each session throughput close to max-min fairness. There-
fore, when the number of messages in buffer, is less than
the Fair size, the network Pump reduces its ACK time to L,
in order to accelerate the input rate, as seen in the extra
term. On the other hand, if buffer, is often full, we have
covert channel problems (see Section 3.2). Hence, the net-
work Pump decreases the input rate by increasing the ACK
time to L, when the number of messages in buffer, is larger
than the Fair size.

In the simulation that is described in Section4, we
choose k = MA,/(Fair size) (see Section 4 for the discussion
of how the Fair size was chosen for the simulation). Thus

Therefore, we have

avg(ACK time) = T, + aug(Q) = M A

Note that aug(N) is close to the Fair size due to the second
term of Q. Thus, we have avg(ACK time) = MA,.

3.1.4 Receivers
Receivers receive messages from Lows and request routing
to the TLP. Each receiver contains 1 slots (size one buffers)
so that the inputs from one session do not interfere with
inputs from other sessions. Messages in the slots will either
be routed or discarded after time-out (if there is no output
buffer available).

3.2 Design Review
In this section, we review the design of the network Pump
and explain how the objectives in Section 1.2 are satisfied.
We back our claims on performance, fairness, and denial of
service by the simulation results presented in Section 4.

3.2. 1 Reliability
Due to the reliability protocol requirement that was speci-
fied in Section1.2 (i.e., ACK, retransmission of the same
message after time-out, and message ID), the network
Pump provides as much reliability as TCP. Also, the High
ACK of the Pump can be realized as an ACK of an applica-
tion layer protocol to provide reliability at the application
layer. There are some secure system protocols which do not
use acknowledgements, but they are not reliable [19], [2].

3.2.2 Performance
The network Pump does not hurt performance
(throughput). Consider the following two cases where out-
put link capacities are not a bottleneck:

Demand rate is faster than the service rate. The network
Pump’s ACK rate, which is tied to the moving aver-
age of the server will slow down input to match the
servers. However, this will not degrade performance
because the throughput will be determined by the
service rate which is the performance bottleneck.
Demand rate is slower than the service rate. The network
Pump’s ACK rate will not slow down the input rate in
this case. Hence, there is no effect on performance.

If the output link capacities are a bottleneck, the network
Pump’s max-min fairness criteria and the moving average
construction assures us that performance is not penalized
(Section 3.1.1). Hence, the network Pump does not affect the
throughput unless the network Pump itself is the bottleneck.

3.2.3 Fairness
The network Pump uses a round-robin scheduling scheme
which achieves max-min fairness at each THP, if all inputs
can accumulate enough messages at output buffers. The
network Pump’s modified moving average construction
that was described in Section 3.1.3 encourages all inputs to
send as many messages as possible up to the Fair size. Hence,
the network Pump strives to achieve max-min fairness.

3.2.4 Covert Channel Analysis
A major reason that the network Pump uses a randomized
ACK stream, aside from fair congestion control is to mini-
mize the threat of covert communication from a High to a
Low. Ideally, a secure computer system does not allow a
communication channel from a high level user/process to a
low level user/process [lo]. However, in reality, unless we
want a nonresponsive or nonreliable system, such covert
channels are a fact of life. Given that, one must try to find
ways to minimize illicit information leakage from such cov-
ert channels. The covert channels that concern us in this
paper are timing channels [12], [15], [24]-these are covert
channels where the output symbols are distinguished by
their different time values.

The specific timing channels that concern us have been
discussed in detail in other papers [61, [71, [131, [161, so we

334 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 5, MAY 1996

present only a brief review here. Let us start off with a sim-
ple scenario: a single low (Low) and a single high (High)
with a store and forward buffer (SAFB) between them. Low
sends a message to the SAFB. When this message is stored
in the SAFB, the SAFB sends an ACK back to Low and then
Low can send its next message to the SAFB. The SAFB at-
tempts to send the message to High and when High has
successfully received the message from the SAFB, High
sends an ACK to the SAFB and the message is removed
from the SAFB. For obvious reliability concerns, we do not
allow Low to write over messages in the SAFB before they
have been read out by High. Therefore, when the buffer is
full it stops receiving messages from Low. This opens up
what is referred to as the full buffer channel (FBC) between
High and Low. High, by intentionally slowing or stopping
its receiving of messages from the SAFB, can cause the
SAFB to become full. Then High can remove messages to
allow space to open up on the SAFB and for Low to again
receive an ACK from the SAFB and send new messages.
Therefore, High can manipulate the timing of the ACK
stream to Low from the SAFB. Let us do a worst-case in-
formation theoretic analysis of the FBC to see how much
information can actually be leaked from High to Low and
hence how insecure our system may be.

The FBC is a timing channel. To exploit the FBC it is as-
sumed that Trojan horses (malicious software in both Low
and High) are in the computer system. The Trojan horses
control when Low sends a message and when High sends
an ACK back to the SAFB.

A Trojan horse fills the SAFB by (High) not removing
messages from the SAFB.
Now that the SAFB is full, a noiseless timing channel
exists between High and Low. Furthermore, this
noiseless channel exists as long as the SAFB is full.
Now Low sends a message to the SAFB. The SAFB
cannot send an ACK back to Low until a spot opens
up on the SAFB. If High happens to remove a mes-
sage as soon as (or before) Low sends a message, then
Low only waits an overhead time 0, for an ACK. We
assume that High, by removing messages from a full
SAFB, can affect the ACK time to Low in increments
of i f , i = 0, 1, 2, Assuming Trojan horses know the
size of the SAFB (i.e., n) and how fast the Trojan horse
can send a message, High knows that Low has filled
the SAFB and has just sent a new message to the
SAFB. If Low gets an ACK at time 0, + ic, Low inter-
prets the signal as the (i + 1)st symbol. Since every
time Low receives an ACK, the SAFB is full again,
and Low can then send its new message-High can
noiselessly send symbols again.

With this example we are looking at a worst-case sce-
nario. High will try to send symbols as quickly as possible,
hence the time values of 0, + k. Of course this allows un-
bounded response times. Real systems have timeouts and
we assume that the timeouts in question are very large in
comparison to 0, 2 E, so that examining a communication
channel with i bounded changes the analysis very little
from assuming that i is unbounded. The time units of our
system are such that e is an integer, i.e., E is an integer

number of system clock ticks (either reading from a system
real-time clock or instruction counts from a tight loop). The
channel capacity [231 of this channel is given by

C = lim sup ~ log !(') bits per clock tick
k+-

where the logarithms are base two and N(k) is the number
of distinct sequences of symbols (ACK times) that take a
total of time k. It can be shown 1231, 1121, [131, 1161 that

C = log w, where w is the positive zero of 1 - (x + Ye).
The polynomial arises from the limiting behavior of the
recurrence relation

-0v

N(k) = N(k - 0,) + N(k - (0, + E)) + N(k - (0, + 26)) +
0, Define q by = q . Note that q need not be an integer.

By changing variables and letting y = X' we see that U' is the

positive zero of 1 - (Y - ~ + y-*). Unfortunately, the only
closed form solution for such polynomials [13] involve spe-
cial functions. For certain special cases such as q = 1 we can
obtain the trivial closed form solution that C = 1 / ~ . Simi-

1 1 + J s
larly for q = 2, we have C = E- log- 2

The basic Pump, which deals with a single Low and a
single High, was designed to minimize the threat of the
FBC by modifying the SAFB by using probabilistic ACK
times. The probabilistic arrival times of the ACKs introduce
noise into the timing channel. Also, the basic Pump pre-
vents the buffer from becoming/staying full. These two
effects, the noise and the fact that the buffer is hardly ever
full, severely diminish the channel capacity of various ex-
ploitations of the FBC. Bounds on the actual covert exploi-
tation of the basic Pump are given by capacity reduction
formulas in 161 and more precisely in 171. In brief, a rela-
tionship between the buffer size n and the moving average
parameter, m, was given with respect to the desired percent
reduction of the covert channel capacity. Hence, either
analytically or numerically, we have a way to measure the
maximal information leakage from High to Low in the basic
Pump. We will show that these reductions also hold for
covert channel exploitations of the network Pump.

In the network Pump, our Trojan horse scenario is that
one particular HI and one particular L, are in cahoots via
cooperating Trojan horses (recall that we are looking at the
situation where the Lows (Highs) do not communicate
among themselves)-thus we again have the potential for
the FBC. However, the fact that there are other users of the
network Pump means that noise is introduced into the FBC
which does not occur in the case of one Low and one High.
Thus, the covert channel analysis from the basic Pump still
holds for the network Pump as a worst-case scenario (we
can very conservatively replace the buffer size of the basic
Pump, n, by the Fair size in the capacity reduction formulas
[7]). This is because in the network Pump, instead of just
attempting to keep the total buffer from become full, we
attempt to keep the total buffer around (the number of ac-
tive sessions x Fair size). Hence, for a misbehaving session
to fill the total buffer, and thus exploit the FBC, it requires
that session to fill the unused total buffer spaces which are

KANG ET AL.: A NETWORK PUMP 335

at least Fair size in number (see Section 3.1.2). Therefore, we
can use the capacity reduction formulas from [7], where
there is one Low and one High as an upper bound. These
reduction formulas tell us how to choose the Fair size and
the moving average parameter, m, to ensure that any covert
channel capacity is within a specified bound. This bound
becomes even more conservative as I and J increase due to
the increasing noise of multiple users being on the system.
Therefore, given values of 0, and E, we can choose a Fair
size and moving average parameter, m, to reduce the po-
tential covert channel capacity to within a specified value.

In the basic Pump there is a statistical channel [171 from
High to Low, when the buffer is not full, caused by Low
attempting to correlate the ACK times to High‘s actions. As
the number of terms making up the moving average grows,
this correlation decreases, and hence the channel capacity
decreases. The same holds as well for the network Pump
and again the multiple users introduce spurious noise
which further serves to confound any meaningful inter-
pretation of the ACK times. Also, the Fair size further frus-
trates correlation attempts by L,. Therefore, the bounds
from the basic Pump again hold.

Finally, the network Pump (as well as the basic Pump) is
sensitive to the small message criterion 1181. By this we
mean even if one has a channel with small, or even zero,
capacity it might still be possible to send small, possibly
noisy, messages relatively quickly. The network Pump, be-
cause of its buffer management and randomization scheme,
is designed to thwart an attempt at sending meaningful
short messages, see [7, Section 41 for details.

3.2.5 Denial of Service
In the network environment denial of service can occur in
the following two cases:

1) A server slows down.
2) An input sends messages faster than the rate that the

In these cases, the shared resources will be monopolized by
this specific session so that other sessions cannot use re-
quired resources.

The above cases will not happen if the network Pump
mediates between the Lows and Highs because the network
Pump monitors the servers’ activities and tracks service
rates. The service rate will be reflected in the ACK rate to L,
through the moving average construction. Due to the net-
work Pump’s handshake protocol and moving average
construction, inputs (Lows) cannot send any more than the
servers (Highs) can handle.

intended server can handle them.

4 SIMULATION RESULTS
To substantiate our claims on performance, fairness and de-
nial of service, simulation experiments have been conducted.

4.1 Simulation Set Up
In our simulation scenario, there are three Lows (Ll, L,, L3)
and three Highs (HI, H2, H3); hence nine sessions. The ca-
pacities of all input and output links are 1.0. All demanded
inputs have Poisson arrival distributions. Demand rates

from L, are AI, = 0.5, AI* = 0.3, A,, = 0.2, the demand rates
from L, are = 0.4, = 0.4, = 0.2, and the demand
rates from L, are ;S1 = 0.4, jS2 = 0.5, ;S3 = 0.1 (see Fig. 7).

All Highs have 2-Erlang distributed service rates. The 2-
Erlang distribution is often used to model the time to com-
plete a task [8]. For the benign case all service rates are set
to 2.0 (to demonstrate the output links being the bottle-
necks, any value greater than 1.0 would suffice). For denial
of service simulation, service rates are pIl = 2.0, p,, = 0.1,
and p,3 = 2.0 for i = 1,2,3.

I I

~ 1.0 0
0.1 H3

!-ti, = 2.0

plZ = 2.0 for benign case
p,z = 0.1 for denial of service

pi3 = 2.0

Fig. 7. The simulation scenario.

The performance and fairness of the following two sys-
tems and the ”ideal” case are compared under different
total output buffer sizes.

The network Pump as described in Section 3. The last
30 High ACK times are used to compute the moving
average (i.e., m = 30) and the Fair size per session was
set to 1/10 of the total output buffer size. Note that
there are nine sessions in our scenario.
The Nonpump. This is the same as the network Pump
(still has the handshake protocol) except that it does not
have the moving average or probabilistic construction.
(Thus, output buffer space is allocated to each session
on a first come first served basis.) In other words,
ACKs will be sent to Lows as soon as the message is
routed. Hence, demand rates will be forcibly adjusted
to the realized rate only when there are no available
output buffers. The purpose of this system is to demon-
strate the importance of congestion control.
The ideal case is where the max-min fairness rates are
achieved over the output links. The max-min rates for
HI are (1/3, 1/3, 1/31, for H2 they are (0.3, 0.35, 0.351,
and for H3 they are (0.2, 0.2, 0.1). Hence, these are the
ideal versions to which we compare the network
Pump and the Nonpump.

4.2 Simulation Results in the Benign Case
In the benign case (i.e., inputs and outputs behave-no
Trojan horses are present), there is not much of a perform-
ance difference between the network Pump and the Non-
pump even though the network Pump performs slightly
better than the Nonpump. This slight performance differ-
ence comes from the congestion control mechanism. Since
the Nonpump has little congestion control, some inputs still
send more messages than the intended server can handle.
This causes an unfair sharing of resources and degrades
performance. This effect will be magnified under the denial

336 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 5, MAY 1996

0 . 3

0 . 2

0.1

0 . 4

0 . 3

0 . 2

0.1

0
5 0 1 0 0 1 5 0 2 0 0 2 5 0

T o t a l Buffer S i z e

-

~

Nonpump pump -B- - 0

Ideal ~~~~ . -

0.4

0 . 3

0 . 2

Nonpump - D - -

0 . 1

0
5 0 1 0 0 1 5 0 2 0 0 250

T o t a l B u f f e r Sire

0 . 2

0 . 4

.......................................

.......... ~ *... D..

1
0.1 1

Nonpump pump -B- - 0

Ideal ~~~~ .

5 0 1 0 0 1 5 0 2 0 0 2 5 0
T o t a l Buffer Size

Fig. 8. Throughput of session,,. Fig. 9. Throughput of session,,. Fig. 10. Throughput of session,,.

0.4 0.1 I 0.4
B I I

.z 0 . 3 '4 0 . 3 .; 0 . 3

U Y U
U U

3

U a m
b. m m

, , ,

3 0 . 2 3 0 . 2 3 0 . 2
2

6 0 . 1 5 0 . 1 ,a 0.1

d 0 0 0

J 3
U U

r: s
3

0 0 ii
.c s

5 0 1 0 0 1 5 0 200 2 5 0 50 1 0 0 1 5 0 2 0 0 2 5 0 50 1 0 0 1 5 0 2 0 0 250
T o t a l Buffer S i z e T o t a l Buffer S i z e T o t a l Buffer S i z e

Fig. 11. Throughput of sessionll.

Note that the Pump and the ldeal curves are virtually identical in Figs. 11,12, and 23

Fig. 12. Throughput of ~ession,~. Fig. 13. Throughput of sessiongl.

Nonp- - 0 . -
Ideal ---- Ideal ~~~~

0 . 3

S a

2'
2
E

5 0 100 1 5 0 2 0 0 2 5 0
T o t a l Buffer S i z e

I 0 . 3
.j
U

U

s 2 0 . 2

m

I
5 0 1 0 0 150 2 0 0 2 5 0

T o t a l Buffer S i z e

"P -e-
Nonpump -0.-

Ideal - - ~ -

...............

O ' : I - _

50 100 150 200 250
Total Buffer Size

Fig. 14. Throughput of Fig. 15. Throughput of session,,. Fig. 16. Throughput of session,,.

of service attack. Fig. 8, Fig. 9, and Fig. 10 show the perform-
ance and fairness among sessions that send messages to H2.

Note session,, achieves its demand rate as realized rate
(0.30). Hence, the jitter in Fig. 8 is from the probabilistic
nature of the input rather than any effects from routing de-
vices.' This probabilistic jitter slightly affects the through-
put of other sessions (Fig. 9 and Fig. 10).

Fig. 9 and Fig. 10 also show the effect of the scheduler,
and the size of the output buffer and the Fair size to the
fairness and throughput of each session, since 0.4 and 0.5
are both greater than 0.35. As the size of output buffer
grows the throughput approaches its ideal (fairness) rate.

Even though we do not show the performance of other
sessions, the network Pump performs very well (basically
the same as in Figs. 11,12,13,14,15, and 16).

2. The simulator never exactly generates a rate of 0.3, hence the jitter.

4.3 Simulation Results Under Denial of

To show the effect of a denial of service attack, we slow
down the service rate (i.e., ,U,, = 0.1) of one High, namely
H,. Figs. 11,12,13,14,15, and 16 show the performance and
fairness comparison between the network Pump and the
Nonpump. The performance of the network Pump is hardly
affected by the attack. However, the performance of the
Nonpump is greatly affected. The main reason for the deg-
radation of performance is that all output buffer space is
occupied by sessions that send messages to H2 so that the
rest of sessions have to wait a long time to obtain them.

Fig. 11, Fig. 12, and Fig. 13 show the throughputs of ses-
sions to H,.

These figures (Figs. 11, 12, and 13) show no jitter of
throughput as the total buffer size increases. This shows
that the probabilistic nature of inputs are all hidden because

Service Attack

KANG ET AL.: A NETWORK PUMP 337

all input (demand) rates to HI are greater than its realized
rate and messages are always waiting for their turn at the
output buffer3 (the round-robin scheme takes a message
from each buffer in turn and does not pass any buffer be-
cause they always have a message ready to send).

Fig. 14, Fig. 15, and Fig. 16 show the throughputs of dif-
ferent inputs to H3. Again the jitter of throughput is from
the probabilistic nature of inputs rather than the effect of
different buffer sizes.

We do not show throughputs of session,,, session,,, ses-
sion,, because under the denial of service attack all cases
have throughput values around 0.033.

5 DISCUSSION
This paper describes the need for a secure device that can
route messages from (multiple) Lows to (multiple) Highs.
Even though abstract composition problems have been well
studied 1111, this paper shows that the actual design of such
a device is quite complicated. This secure device should not
only meet the requirements of conventional network rout-
ers such as performance, reliability, and fairness, but also
the requirements of security, such as minimal impact from
covert channels and denial of service attacks. The network
Pump that we introduced in this paper can balance the
above requirements.

It is interesting to note that the network Pump’s use of
indirect acknowledgments is similar to ideas put forth in
the mobile computing community [l]. Further, the network
Pump’s stable storage is along the lines of ”packet caching”
used in [25].

One of our future plans includes designing and building
the network Pump on top of the ATM layer. We are also
investigating extending the network environment described
in this paper to deal with a more general lattice-type secu-
rity structure. We refer to this as the ”generalized Pump.”
Note that if we allow Lows (Highs) to conspire then we
must redo our covert channel capacity analysis. We leave
this as future work.

ACKNOWLEDGMENT
We wish to thank Ruth Heilizer and the referees for their
helpful comments and suggestions. This is a revised ver-
sion of “A Network Version of the Pump,” which appeared
in the Proc. of the 1995 IEEE Symposium on Security and
Privacy, pp. 144-154, Oakland, California.

REFERENCES
I11 A. Bakre and B. Badrinath, ”I-TCP: Indirect TCP for Mobile

Hosts,” 15th Int’l Conf. Distributed Computing Systems (ICDCS),
May 1995.

[21 J.N. Froscher, D.M. Goldschlag, M.H. Kang, C.E. Landwehr,
A. P. Moore, IS. Moskowitz, and C.N. Payne. ”Improving Inter-
Enclave Information Flow for a Secure Strike Planning Applica-
tion,” Proc. 11 th Computer Security Applications Conf., pp. 89-98,
New Orleans, La., Dec. 1995.

[31 M. Gasser, Building a Secure Computer System. Van Nostrand Re-
inhold, 1988.

[4] M. Gerla and L. Kleinrock. ”Flow Control: A Comparative Sur-
vey,” IEEE Trans. Commun., vol. 28, no. 4, pp. 553-574, Apr. 1980.

I51 E.L. Hahne, ”Round-Robin SchedulinF: for Max-Min Fairness in
Data Networks,” IEEE 1. Select. Areas Commun., vol. 9, no. 7,
pp. 1,024-1,039, Sept. 1991.
M.H. Kang and IS. Moskowitz. “A Pump for Rapid, Reliable,
Secure Communication,” Proc. ACM Conf. Computer G. Commun.
Security ’93, pp. 119-129, Fairfax, Va., 1993.
M.H. Kang and IS. Moskowitz. ”A Data Pump for Communica-
tion,” Submitted for publication, also available as NRL Memo.
Report 5540-95-7771, 1995. It is available for viewing at Web site
(http:/ /www.itd.nrl.mil/ITD/5540/publications/CHACS/index
1995. html) .
A.M. Law and W.D. Kelton. Simulation Modeling b Analysis.
McGraw-Hill, 1991.
”ATM Knits Voice, Data on Any Net,” IEEE Spectrum, Feb. 1994.
B.W. Lampson, “A Note on the Confinement Problem,” Comm.
ACM, vol. 16, no. 10, pp. 613-615,1973.
J.D. McLean. ”A General Theory of Composition for a Class of
’Possibilistic’ Properties,” IEEE Trans. Software Engineering,
vol. 22, no. 1, pp. 53-67,1996.
J.K. Millen, ”Finite-State Noiseless Covert Channels.” Proc. Com-
puter Security Foundations Workshop 11, pp. 81-86, Franconia, N.H.,
1989.
A.R. Miller and IS. Moskowitz, “Reduction of a Class of Fox-
Wright Psi Functions for Certain Rational Parameters,” Computers
6. Mathematics with Applications. vol. 30, no. 11, pp. 73-82,1995.
B.E. Montrose and M.H. Kang, “An Implementation of the Pump:
Event Driven Pump,” NRL Memo. Report 5540-95-7782,1995.
IS. Moskowitz and A.R. Miller, “The Channel Capacity of a Cer-
tain Noisy Timing Channel,” IEEE Trans. Information Theory,
vol. 38, no. 4, pp. 1,339-1,344, July 1992.
I.S. Moskowitz and A.R. Miller, ”Simple Timing Channels,” Proc.
1994 IEEE Computer Society Symp. on Research in Security and Pri-
uacy, pp. 56-64, Oakland, Ca., 1994.
IS. Moskowitz and M.H. Kang, ”Discussion of a Statistical Chan-
nel,” Proc. IEEE-IMS Workshop on Information Theory and Sta-
tistics, p. 95, Alexandria, Va., 1994.
I.S. Moskowitz and M.H. Kang, ”Covert Channels-Here to
Stay?,” Proc. COMPASS ‘94, pp. 235-243, Gaithersburg, Md., 1994.
I S . Moskowitz and M.H. Kang, ”The Modulated-Input Modu-
lated-Output model,” Proc. IFIP WG 11.3 Working Conf. On Da-
tabase Security, Rensselaerville, N.Y., Aug. 1995.
B. Mukherjee and S. Banerjee, “Alternative Strategies for Im-
proving the Fairness in an Analytical Model of DQDB Networks,”
Proc. I E E E INFOCOM ’91, pp. 879-888,1991.
R.M. Needham, “Denial Of Service: An Example,” Comm. ACM,
vol. 37, no. 11, pp. 42-46,1994.
I.J. Parsonese, ”The Basics in Networking the Data Pump,”
Working paper.
C. Shannon and W. Weaver, The Mathematical Theory of Communi-
cation. Univ. of Illinois Press, 1949. Also appeared as a series of
papers by Shannon in the Bell System Technical Journal, July 1948,
Oct. 1948 (”A Mathematical Theory of Communication”), Jan.
1949 (”Communication in the Presence of Noise”).
J.C. Wray, “An Analysis of Covert Timing Channels,” Proc. 1991
IEEE Computer Soc. Symp. on Research in Security and Privacy, pp. 2-
7, Oakland, Ca., 1991.
H. Xu and B. Bhargava, ”Reliable Stream Transmission in Mobile
Computing Environments,” Technical Report CSD 95-002, Com-
puter Science, Purdue Univ., 1995.

3. For example a fluctuation around a rate of 0.5 is not significant when
the realized rate is actually much less than 0.5.

338 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 5, MAY 1996

Myong H. Kang received his MS degree-in
1985 from the University of Illinois at Urbana-
Champaign and the PhD degree in 1991 from
Purdue University, both in electrical engineer-
ing. During 1986-1987 he was a software engi-
neer at Chicago Laser Systems. Since coming
to the Naval Research Laboratory in 1991 he
has developed the prototype of SINTRA MLS
database systems and the related theories. His
research interests include parallelization tech-
niques. data modeling, consistency mainte-

nance, and performance modeling in parallel and distributed systems.
He co-invented the NRL Pump in 1993 with Dr. I.S. Moskowitz.

Ira S. Moskowitz (M'89) received the BS de-
gree in 1978 and the PhD degree in 1983, both
in mathematics, from the State University of
New York at Stony Brook. He has done work in
differential topology and search theory at Texas
A&M University, Center for Naval Analysis, and
Elmhurst College. Since 1989 he has been a
mathematician at the Naval Research Labora-
tory researching the formal foundations of com-
puter security which include covert communica-
tion channels, information theory, automata

theory, and special function techniques He co-invented the NRL Pump
in 1993 with Dr. M.H. Kang

Daniel C. Lee (S'91-M'92) received BS de-
grees in electrical engineering and in mathe-
matics from the University of Maryland at Col-
lege Park in 1985, the SM and PhD degrees in
electrical engineering and computer science
from the Massachusetk Institute of Technology
in 1987 and 1992, respectively. He was an as-
sociate member of the technical staff in the
Litton AMECOM in 1985, a consultant for
NYNEX Science and Technology in 1988, and a
consultant for Diaital Eauioment CorDoration

from 1992 to 1993. Dr. Lee taught at M I 6 Leaders for Manufacturing
program as a technical instructor from 1989 to 1992 and at the Electri-
cal Engineering Department of the University of Maryland in 1995 as
an adjunct faculty member. Since 1993 he has been with the Naval
Research Laboratory as an electronics engineer, working on C41 and
communication systems engineering.

He has wide research interests in systems, communications, net-
working, and operations research. Dr. Lee's honors include the 1989
Frederick C. Hennie 111 Teaching Award from MIT.'s Electrical Engineer-
ing and Computer Science Department; he shared a 1995 NRL Alan
Berman Publication Award with Dr. M.H. Kang and Dr. IS. Moskowitz.

